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1. INTRODUCTION

Android has become the most widely used mobile operating system in the world
[Northcraft 2014]. Run on some of the most and least expensive smart phones, this
platform is supported by a series of markets that boast over 1 million applications
providing functionality ranging from social networking to travel and finance [Statistia
2015]. As such, this platform now has access to some of its users’ most sensitive
operations and data.

Android has accordingly become a popular target for analysis by the security re-
search community, but not simply for the preceding reasons. code. This information
allows program analysis tools to more easily produce accurate results. When combined
with the massive number of applications available for analysis, researchers have had
significant opportunities to produce valuable real-world results. Unsurprisingly, the
past half decade has seen the publication of hundreds of papers on the topic of Android
application security.

Given this sheer volume of work, the systems security research community is at
an important crossroads. If we have addressed the major intellectual problems facing
this platform and produced artifacts capable of helping others improve the security
of their applications, our work is largely finished. Alternatively, if we have neglected
areas or our tools are insufficient, the work must continue. This issue simply cannot
be resolved without a meaningful systematization of the techniques, frameworks, and
artifacts generated by this extended community.

In this article, we attempt to answer two critical questions for the systems security
community interested in program analysis of Android applications. First, which areas
have been addressed by prior security research and which still require attention? We
attempt to answer this question through a comprehensive classification of security
research in this space. Second, because we as a community value the analysis tools
and artifacts provided by many of these efforts, which tools are available and can be
readily used by the application development community to improve the security of
their outputs? We attempt to answer this question by performing extensive testing
on a representative set of popular Android application analysis tools. In doing so, this
work makes the following contributions:

—Systematize Android-specific analysis challenges: The tight integration of Android
applications with the system runtime causes even sound program analysis algo-
rithms to become unsound without careful modeling and abstraction. Furthermore,
the platform introduces new abstractions that change the threats that must be con-
sidered by program analysis tools seeking to identify vulnerabilities and dangerous
behavior. Accordingly, we provide readers with the context to understand how pro-
gram analysis in Android is different from analysis in other domains.

—Characterize application security analysis efforts: With more than half a decade of
research on this topic, our community has tackled a wide array of problems as they
relate to Android program analysis. However, reasoning about which problems are
being addressed and the areas that lack attention is difficult. This thrust of our work
offers a comprehensive classification of Android application security analysis efforts
published at 17 different venues since 2010.

—Evaluate the state of Android tools: The systems community often builds on the tan-
gible artifacts of our peers’ research, making the release of operational tools critical
to our success as a discipline. Such tools are also critical to ensuring independent val-
idation of published results. As such, we discuss our experience working with seven
popular tools, measure their ability to analyze a range of applications, and then de-
termine their ability to be used by application developers and auditors to improve
the security of their products. In general, we find that the tools are challenging to
use, and when they do work, they often produce output that is difficult to interpret.
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It is critical to note that we do not analyze every Android-related paper ever written;
rather, we attempt to systematize only those papers that look to improve the security
strictly of Android applications and were published at a major venue. We believe that
it would be worth systematizing these other efforts to make an Android operating
system, market ecosystem, and so forth, but these will require separate dedicated ef-
forts from this significant undertaking. Indeed, prior efforts have focused on developing
a taxonomy of Android security research [Sufatrio et al. 2015], examining the research
devoted to appification challenges [Acar et al. 2016], and investigating the state of the
art of input generation for dynamic testing [Choudhary et al. 2015].

The remainder of this article is organized as follows. Section 2 provides a background
into Android-specific challenges for analysis. Section 3 briefly describes the methods
used to develop our survey. Section 4 conducts an in-depth analysis of the state of
the art in Android program analysis tools and the classes of problems they claim
to address. Section 5 presents the methodology we used to select and evaluate our
candidate research artifacts. Section 6 presents the results of our analysis and offers
takeaways for other researchers based on our observations. Section 7 offers lessons
learned about the state of available analysis tools for Android and suggests ways to
address open challenges. Section 8 provides concluding remarks.

2. ANDROID-SPECIFIC ANALYSIS CHALLENGES

We begin our analysis by highlighting the unique challenges in analyzing Android
applications. The first challenge deals with how applications are distributed. Although
Android applications are written in Java, the application package binary does not
contain Java bytecode. The Android SDK includes an additional step that transforms
Java bytecode into DEX bytecode, which is designed to run in the Android-specific
Dalvik VM. Given the abundance of program analysis tools and frameworks designed
to operate on Java bytecode, the research community has created retargeting tools
such as ded [Enck et al. 2011], Dare [Octeau et al. 2012], and dex2jar [dex2jar 2015] to
transform DEX bytecode into Java bytecode.

Note that retargeting DEX bytecode to Java bytecode is significantly different from
decompiling DEX bytecode to Java source code. Directly decompiling DEX bytecode of-
ten results in hard-to-read source code with infinite while loops and break statements.
Therefore, ded and Dare use Soot [Vallée-Rai et al. 1999; Bartel et al. 2012a] to optimize
the Java bytecode before decompiling to source code. Although the Soot optimization
produces much more readable Java source code, it significantly increases the decom-
pilation time. Despite the ability to disable Soot optimization in ded and Dare, slow
performance of the default configuration has steered researchers toward other tools.

With tools such as Dare and the recent inclusion of a DEX front end for the Soot anal-
ysis framework [Lam et al. 2011; Bartel et al. 2012a], one might wrongly assume that
Android’s program analysis challenges have been solved. This assumption is far from
true. The Android runtime environment presents many practical challenges for both
static and dynamic program analysis tools. The challenges are akin to the soundiness
argument [Livshits et al. 2015], which highlights the practical limitations of static pro-
gram analysis on Java code (among other languages). Android’s runtime environment
makes some of these aspects even harder through pervasive use of difficult-to-analyze
language features, as well as new abstractions that pose similar practical challenges.
The remainder of this section is devoted to describing these practical challenges that
we colloquially call Androidisms.

2.1. Android Abstractions

A key difference between Android applications and Java applications is the lack of
a main() function that begins execution. Instead, the Android runtime automatically
invokes parts of the application code based on system and user events. Program
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Fig. 1. How Android application components interact within the same app, with other apps, and with the
Android framework.

analysis tools tracking control flow and dataflow must be sensitive to Android’s
runtime abstractions. Specific details of these challenges can be found in the papers
on FlowDroid [Fritz et al. 2014], Amandroid [Wei et al. 2014], and DroidSafe [Gordon
et al. 2015]. These three tools address many, but not all, of the challenges.

2.1.1. Application Lifecycle. The Android SDK requires developers to partition applica-
tion functionality into four conceptual component abstractions: activity, service, broad-
cast receiver, and content provider. Prior work has described these abstractions in
detail [Enck et al. 2009]. For the purposes of this article, it is important to observe
that each component type is a Java class that is extended by application code. The run-
time invokes specific methods (e.g., onCreate()) in response to system events. Activity
components have the most complex lifecycle. Activity components define interfaces to
create, start, pause, resume, stop, and destroy the component instance. Each of these
interfaces in each component is an entry point that must be considered during program
analysis. Fortunately, nearly all application components must be statically defined in
the package manifest file. The only exception is dynamically created broadcast receiver
components, which are often overlooked by program analysis tools.

2.1.2. Inter-Component Communication. The Android runtime provides abstractions for
components to interact with one another, whether or not they are in the same or a
different application. An illustration of this procedure is provided in Figure 1. Intent
messages are the primary abstraction used by third-party applications. An intent mes-
sage can be explicitly addressed to a target component. However, intent messages can
also be implicitly addressed using action strings. Developers use the application man-
ifest to define intent filters for components, which indicate the set of action strings the
component can handle. The Android runtime automatically resolves the target compo-
nent based on the set of currently installed applications and a complex set of resolution
rules. Resolution sometimes involves the end user by prompting for a preferred appli-
cation. The rules also include other string values, such as a category and MIME type.
Further complicating analysis, third-party developers can add to the list of predefined
action strings. In all cases, these strings (action string, component name, category,
MIME type) may be defined as constants in the code or be assigned based on input
from other intercomponent communication (ICC), the network, or files. These strings
may also be encrypted or obfuscated in some way to deter reverse engineering. Cor-
rectly matching the intent message addressing values to intent filters is a nontrivial
task that must incorporate system state.
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In addition to resolving ICC control flow during program analysis, tools must resolve
dataflow. Intent messages can transfer sensitive information not only through action
strings but also through a field called extras. This field contains an instance of a Bundle
class, which is simply a key-value storage structure. Tools that calculate dataflow
dependencies (e.g., taint tracking) must track the key associated with each value in
the Bundle. Furthermore, since Bundles may be passed between applications, the
program analysis tool must re-create the app and system state when analyzing the
called component.

2.1.3. System Callbacks. Applications frequently interact with the Android runtime.
There are two types of runtime functionality: (1) functionality that executes in the same
process as the application and (2) functionality that executes in system processes. Both
types present challenges for program analysis. Android heavily uses threads, which
is a known challenge for Java program analysis [Rinard 2001]. Android exacerbates
the challenge by providing new APIs for thread-like functionality. For example, the
android.os.Handler class allows message objects in one thread to be passed to a message
queue in another thread. Because the Handler abstraction uses a generic Message type,
dataflow analysis must track additional context sensitive information.

Tracing functionality through system processes is equally, if not more, challenging.
All Android interprocess communication (including ICC) is built on top of the Binder
IPC mechanism. Binder allows applications to pass object references that are used for
callbacks from other processes. For example, to get geographic location, an application
registers a LocationListener object with the system’s Location Manager Service. Based
on the request parameters, the Location Manager Service will automatically call the
onLocationChanged() method of the listener object on specified intervals. Tracing such
control flows requires understanding the behavior of the underlying framework. Be-
cause this framework contains thousands of methods, most static analysis tools that
need to analyze flow through the framework use manually described models of the
behavior described as stub functions [Gordon et al. 2015; Fritz et al. 2014; Wei et al.
2014; Kim et al. 2012; Feng et al. 2014; Lu et al. 2012].

2.1.4. UI Callbacks. Most Android applications are designed around a graphical user
interface. In addition to the activity component lifecycle challenges discussed earlier,
program analysis tools must account for control flow and dataflow originating from UI
widgets. When an application wishes to receive click events for a widget, it registers an
OnClickListener object for that widget with the Android runtime. When the widget is
pressed, the onClick() method of the listener object is called. These click-based callbacks
and the other types of UI callbacks provided by the Android API are all entry points that
must be considered in the analysis. Furthermore, it is possible for an application devel-
oper to create a custom widget that specifies its own set of custom events and UI call-
backs in addition to those provided by the Android API. As these custom callbacks are
also entry points that must be considered in the analysis of applications, the analysis of
Android applications becomes even more complex. Additionally, the majority of applica-
tions specify user interfaces and their callbacks using an XML resource file, from which
the interface is generated at compile time. Several works, including UIPicker [Nan et al.
2015] and SUPOR [Huang et al. 2015b], have used this resource file as a starting point.

2.1.5. Persistent Storage. Android is designed to operate on a range of devices with
different hardware capabilities, with a special focus on devices with limited memory.
Android components (building blocks of apps) can be interchanged at any moment, like
when a user switches between applications. As a result of this capability, any component
can be suspended at any moment. In addition, applications frequently save values into
persistent storage. Program analysis seeking to track dataflows must trace values

ACM Computing Surveys, Vol. 49, No. 3, Article 55, Publication date: October 2016.



55:6 B. Reaves et al.

into and out of persistent storage. Android persistent storage includes files, shared
preferences, SQLite databases, and content provider components. Shared preferences
are a key-value storage that is shared among all components in an application. Content
provider components present a relational database interface for sharing information
between applications. They are typically backed by SQLite database files.

2.1.6. Rich API Features. The Android runtime simplifies application development by
providing a rich set of APIs. In addition to tracking control- and dataflows through
APIs that use native code, a program analysis tool might wish to designate certain
features as sources or sinks for analysis. Achieving complete coverage of such APIs is
practically challenging due to the sheer number of API calls.

2.2. Java Abstractions

Even without the analysis challenges created by Android’s specific design nuances,
the analysis of Java code is still challenging. Because Java uses several difficult-to-
analyze language features, constructing an exact call graph of any Java program is
a well-known hard problem that makes modeling exact program behavior difficult.
Furthermore, no existing algorithms can construct a precise call graph for any Java
program while remaining sound. Further still, increasingly precise but still unsound
call graphs often require large amounts of memory and computing power to construct,
which is detrimental to performance. Sound but imprecise call graphs are easy to
construct but include edges to methods that are technically unreachable, which can
increase the call graph’s size dramatically and affect analysis performance as well.
Thus, constructing a call graph for analysis purposes, and therefore the analysis itself,
is ultimately a trade-off between precision, soundness, and performance. Ultimately,
the difficulty in Java code analysis boils down to four major Java language features.

2.2.1. Inheritance and Polymorphism. Java code relies heavily on a class hierarchy struc-
ture to reduce code repetition and enable more robust code reuse than non–object-
oriented languages (e.g., C). In other words, every class in Java ultimately has a parent
class for which it derives some of its methods and fields. These methods and fields can
in turn be overridden by new methods and fields of the same name in the child class.
Moreover, a developer can specify that a class has certain method signatures by writing
an interface, leaving the actual method body code up to the developer of a class that
implements that interface. Further still, in another attempt to encourage code reuse,
Java allows for polymorphic types (i.e., generics) in classes and methods, thus allowing
a class or method to be reused with many different types of objects.

As a result of all various language features of Java that tend to hide an object’s
underlining class, static resolution of method invocation and field access statements to
proper method/field targets are difficult. When a method is invoked on an object, the
object could be declared as a type that is a superclass of the object’s actual underlining
class or as an interface type. Both situations make it difficult to determine an actual
invoke resolution target, as the actual underlining class of an object is determined
at runtime and hidden by the type abstractions of the code. Thus, making security
inferences about app behavior is subsequently more difficult because the actual code
executed at runtime may vary.

To approximate the method invocation targets, many different techniques have been
proposed. Some such as class hierarchy analysis (CHA) [Dean et al. 1995] are sound
but imprecise, which often detrimentally effects performance. Others are precise but
not necessarily sound, such as the many precision-increasing variations on points-to
sets [Lhoták and Hendren 2003; Smaragdakis et al. 2011, 2014]. Moreover, as pre-
cision increases, so does the amount of memory and processing power required. This
ultimately leads to tools like FlowDroid [Fritz et al. 2014], Amandroid [Wei et al. 2014],
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and DroidSafe [Gordon et al. 2015], which are precise but not necessarily scalable to
large, complex applications or will not run on standard desktop hardware.

2.2.2. Reflection. Reflection allows application developers to dynamically inspect
classes, interfaces, methods, and fields, as well as create objects, invoke methods, and
access object fields without the class, method, or field name being known at compile
time. This is generally performed by providing the class, method, or field name as a
string to the related reflection method. Unfortunately, as the string values are decided
at runtime and may be set based on input, producing an exact call graph of a program
using reflection is a well-known hard problem [Livshits et al. 2005].

Many Android apps and Java programs often rely on reflection for tasks such as
API compatibility checking and code obfuscation. Indeed, it is recommended on the
Android Developers Blog for application developers to perform backward compatibility
checks using reflection [Android Developers Blog 2009]. Although it is a fairly common
practice for malicious code to hide its behavior from analysis tools through the use
of reflection [Rasthofer et al. 2016], reflection is used by nonmalicious application
developers for obfuscation purposes as well. Unfortunately, soundly analyzing reflected
code is such a troublesome task that most tools neglect reflected code altogether, which
in many cases can affect the soundness of the analysis.

2.2.3. Dynamic Loading. Like other languages, in Java it is possible to dynamically load
code. This is generally performed in Java by dynamically loading classes that are usu-
ally identified using a string representation of the class name. As a developer can write
his or her own class loader, the string used to identify and load classes can in fact be
anything [Rasthofer et al. 2016; Livshits et al. 2005]. Additionally, Android allows ap-
plications to dynamically load DEX bytecode using the dalvik.system.DexClassLoader
object [Android Developers Blog 2011]. This interface is required because DEX files are
limited to 65,000 methods [Android Developer Documentation 2015], and some appli-
cations (e.g., games) include many Java library dependencies. However, this feature
has also been used suspiciously by ad libraries [Grace et al. 2012].

The challenges of dynamic loading are well-known hard problems for Java program
analysis. Similar to reflection, dynamically loaded code is often neglected in the analysis
of Java code, which can affect the soundness of the analysis.

2.2.4. Native Code. Although Java code is ultimately easier to analyze statically despite
the difficulties mentioned previously, it has one major setback: the support for the
execution of native code. Native code can be invoked in any number of ways from Java
code, including the execution of a binary file from a command as a subprocess, a call to
a native method through the Java Native Interface (JNI), and in Android even through
callbacks to native activities. Moreover, native code can make callbacks into the Java
code, a process typically conducted through the JNI. On top of being able to perform all
operations available to normal non-Java programs, native code executed from Java code
on Android runs within the same memory space as the Java code. Thus, native code has
access to all Java code and data and can freely modify any Java-related information of
an application, making the static analysis of just the Java code unsound. Even if the
native code is not inherently malicious, execution paths can easily be hidden from the
majority of Android and Java analysis tools by simply running the execution paths
through native code, which is notoriously difficult to analyze and often ignored by most
tools.

2.3. Dynamic Analysis Considerations

Many of the preceding challenges are specific to static program analysis. The challenges
result because the static program analysis tools do not have knowledge of the system

ACM Computing Surveys, Vol. 49, No. 3, Article 55, Publication date: October 2016.



55:8 B. Reaves et al.

state. In contrast, dynamic program analysis tools sidestep many of these challenges
because the analysis is performed in a running system. However, dynamic program
analysis, in general, is inherently limited in code coverage.

The first critical decision when designing a dynamic analysis tool is how to moni-
tor and collect data about an app’s runtime behavior. Dynamic program analysis tools
can use one of several analysis approaches. The first approach is generating execution
traces for subsequent analysis. These traces can happen at any level in the software
stack, including native processor instructions, virtual machine instructions, system
calls, Android API calls, or even simply network traffic. These traces provide a full
view of application behavior from the point of view of the tracing location, but all
tracing locations present a challenge of associating low-level behavior (e.g., individual
machine instructions) with high-level semantics of interest (e.g., sending a premium
SMS). The second approach that tools interested in dataflow analysis can use is dy-
namic taint analysis. Taint analysis tracks the flow of data from any number of deferred
sensitive sources to defined sensitive sinks. Although research has found this to be per-
formant and effective, this analysis is ultimately limited to questions of dataflow. Third,
statically or dynamically rewriting apps for analysis is a common approach in tradi-
tional binaries [Nethercote 2004] but is not one that has been applied to Android. App
rewriting has been popular for implementing enhanced policy enforcement [Georgiev
et al. 2014; Shekhar et al. 2012; Bhoraskar et al. 2014; Davis and Chen 2013], so this
rewriting for dynamic analysis may be possible.

Regardless of analysis approach, dynamic program analysis requires effective test
input generation. The Android SDK includes an input fuzzing tool called Monkey.
However, Monkey can get stuck in activity components and not explore the rest of the
application. Therefore, dynamic analysis tools using Monkey may need to run the same
application multiple times to achieve good results. Android applications also commonly
present input barriers to functionality. For example, some applications present a login
screen before the application may be used. Running the application multiple times
will not overcome such challenges. Fortunately, login screens often include a link or
button to register for an account. Therefore, incorporating text analytics into test input
generation can help produce better coverage but will still likely not produce full code
coverage in many cases.

Certain analysis motivations (e.g., malware analysis) must also consider the impact
of system events. For example, when a new SMS message arrives, the Android run-
time will send intent messages to all broadcast receiver components that defined an
intent filter for the SMS_RECEIVED action string. To exercise these code paths, the
dynamic program analysis tool must simulate such system events. Somewhat related
to simulating system events, some applications use antireversing measures such as
not executing certain functionality if the application is run on an emulator. Such tech-
niques are commonly used by malware but are also benign applications attempting to
protect intellectual property. Emulator detection is not the only difficulty that apps can
present to dynamic analysis. Runtime code integrity checks (potentially obfuscated)
and root checks (to prevent debugging on rooted platforms) are additional challenges.

Finally, Android’s runtime functionality is distributed among libraries in the ap-
plication under test and system applications. As mentioned previously, control- and
dataflow frequently cross application and system boundaries. Therefore, dynamic taint
analysis tools must instrument not only the application under test but also the system
applications.

3. SURVEY METHODOLOGY

During our preliminary research, we thought it only fitting to gather all related papers
in the space. To ensure that we had a comprehensive repository of Android publications,
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Fig. 2. Number of Android security papers presented in software engineering, security, systems. and net-
working venues has risen sharply over the past 6 years.

we gathered all of the approximately 300 Android-related papers from 17 security and
software engineering conferences since 2010. The complete list of conferences is ACM
CCS, ACSAC, ACM WiSec, USENIX OSDI, ACM MobiSys, ACM SPSM, IEEE MoST,
ACM/IEEE ICSE, ACM PLDI, ACM CODASPY, ACM POPL, IEEE S&P, USENIX
Security, ISOC NDSS, ACM MobiCom, ACM/IEEE ASE, and ACM FSE. Figure 2 shows
the contribution of the security, software engineering and programming languages,
and systems and networking research communities to this collection. Note the steady
increase in published Android work each year. We chose to only focus on academic
works because academic tools are generally easier to obtain and test, do not require
expensive licensing or long and involved procurement processes, and most importantly
have clearly stated goals and capabilities.

Having finished our collection of papers, we then filtered out papers unrelated to se-
curity or Android application analysis. Because Android has seen an extensive amount
of research from the security community and beyond, a narrow focus was important to
adequately treat the complex topics involved. We limited our scope to static analysis
and dynamic analysis techniques. Some tools have aspects of both static and dynamic
analysis. These “hybrid” tools tend to have a strong emphasis on one analysis class
with additional techniques from the other class to improve analysis. We have classified
these tools into the relevant static or dynamic analysis sections based on the predomi-
nant technique. Specifically, we selected papers if they could affirmatively answer the
following question: Does this published research paper provide an artifact (e.g., tool)
that automatically produces a result concerning the security of one or more Android
applications? A corollary question was the following: Could this artifact be useful to the
developer or auditor of a single app or a small set of apps? We note that some artifacts
may be applicable only to developers or only to third-party analysts. We consider either
use case equally valid, but we note that most analysis techniques will be applicable to
either case.

Many papers, although beneficial to the Android community, discussed topics out of
scope. For example, some papers [Chakradeo et al. 2013] produce a relative ordering of
applications in terms of security behaviors but cannot produce a semantically meaning-
ful analysis about a single app. These tools are useful in the context of a whole market
but less useful to developers. Other papers use static analysis techniques to rewrite
apps to improve security aspects of application libraries [Georgiev et al. 2014; Shekhar
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et al. 2012] or to enhance the expressiveness of a permission model [Bhoraskar et al.
2014] or user-specified policy [Davis and Chen 2013], or to repair already discovered
vulnerabilities [Zhang and Yin 2014]. One paper statically analyzes high-risk methods
in the Android operating system to identify potential system vulnerabilities but does
not analyze apps [Huang et al. 2015a].

The end result of this paper analysis was a focused study in Android application
security spanning the past 6 years of research.

4. STATE OF THE ART

We are aware of the many challenges that Android apps and Java programs in general
pose to static analysis tools; however, we do not have a clear view of the challenges that
have been addressed by prior security research and the challenges that may still need
attending. To answer these questions, we performed a comprehensive review of Android
static or dynamic analysis techniques and characterized them further in Tables I and
II, respectively. The following section discusses the findings of this review process.

4.1. Static Analysis

Static analysis approaches comprise the majority of application security research—36
papers in our survey—outnumbering dynamic approaches by more than a factor of 4.

Table I shows our characterization of the static analysis space. Static analysis is a
common approach for several reasons. First, Java is a high-level language and is easier
to analyze statically than other languages. Additionally, Dalvik VM code (DEX) is also
a relatively high level instruction set that retains many of the semantics of Java. The
easy analysis of DEX has been a boon to researchers because it means that tools can
be developed and tested on a large corpus of real-world applications. Examining more
than 100,000 applications is not uncommon in many of these papers.

Whereas Java and DEX are easier to parse and analyze than other environments,
the Android application architecture still presents several challenges that must be
addressed for effective static analysis. These include classic static analysis challenges
and Android-specific issues.

4.1.1. Common Java Static Analysis Challenges. The first general static analysis
challenge—faced by all analyses of Java-based code—is how to properly reason about
reflection. This is a difficult problem, and most tools do not address it. Five tools are
able to handle reflection involving string constants: DroidSafe [Gordon et al. 2015],
Stowaway [Felt et al. 2011], FlowDroid [Arzt et al. 2014], DroidSift [Zhang et al. 2014a],
and Scandal [Kim et al. 2012]. DroidSafe and Stowaway, however, take it a step further
and attempt to handle reflection involving strings that are constructed programmat-
ically. DroidSafe for instance, attempts to account for reflection in application code
using a method similar to those found in two previous works [Smaragdakis et al. 2015;
Livshits et al. 2005]. Smaragdaki developed an approach to analyze reflection with
high empirical soundness, and Livshits developed an algorithm that approximates
the targets of reflective calls by using points-to information. Alas, these works make
several assumptions, such as the assumption of well-behaved class loaders, which
cannot be guaranteed when analyzing malicious code. Moreover, no static analysis
tools in our survey attempt to handle reflection involving encrypted/obfuscated
strings, a technique commonly used (especially by malware) to obfuscate and protect
code against static analysis attempts. However, Harvester [Rasthofer et al. 2016] is
specifically designed to handle the analysis of malicious code that uses reflection.
Unfortunately, as Harvester relies on dynamic analysis to resolve reflection code, its
analysis may not always be sound. Another classic static analysis challenge is the
dynamic loading of code at runtime. In Android, this takes the form of dynamic DEX
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Table I. Static Analysis
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loading and is often used to hide code from static analysis attempts. Unfortunately,
none of the tools surveyed addressed this problem. Similarly, Android provides support
for interacting with native code through several interfaces. However, all tools surveyed
fail to properly address flows through native code as well.

4.1.2. Modularity Challenges. Although issues of runtime code loading and class resolu-
tion are common across static analysis, Android’s unique emphasis on interapplication
communication means that some meaningful security analyses can only be performed
in the context of multiple applications. Furthermore, because of the modularity of An-
droid, apps communicate with the system through these same communication channels
to perform a significant portion of their functionality. Essentially, code in the applica-
tion package does not comprise the entirety of all code executed by the app. Unfortu-
nately, most analysis tools still treat apps as individual (isolated) entities, except for
system interaction. They do not model or account for interapplication communication,
so they often do not get full insight into the full range of possible app behaviors even if
they do model ICC. In particular, only four have support for interapplication analysis:
Epicc [Octeau et al. 2013], UI Deception [Bianchi et al. 2015], DidFail [Klieber et al.
2014], and DroidJust [Chen and Zhu 2015]. A fifth tool, Blue Seal [Shen et al. 2014],
requires dynamic analysis for interapp control.

4.1.3. Analysis Goals. The most popular topic for tools to address is sensitive infor-
mation leakage, with 17 tools addressing this issue. Although Android is certainly
not the only platform with concerns about information leakage, the high concentra-
tion of sensitive information available on mobile platforms makes this problem a high
priority. Despite significant investments into tools that address this issue, the Android-
specific and general Java-related analysis challenges discussed in Section 2 still cause
researchers significant hardships in developing tools that produce sound and precise
results in a practical amount of time. Epicc [Octeau et al. 2013] for example, although
highly advanced in its handling of ICC, is still unable to properly reason about ICC
through content providers. Moreover, Epicc cannot analyze code containing reflection,
dynamic DEX loading, or native code. The second most popular topic for tools to ad-
dress is the open problem of permission misuse (e.g., the overpermissioning of Android
apps), which is covered by eight tools. In a way, this problem is linked to the issue of
sensitive information leakage (with several tools handling both), as overpermissioned
applications have access to more sensitive information. Other popular topics related
to the issue of sensitive information leakage are those of intent spoofing and unautho-
rized intent receipt, each covered by four papers, as they are often issues exploited by
malicious apps.

Several other reoccurring topics for tools include those of cryptography misuse and
plagiarism detection (i.e., the identification of modified and/or repackaged legitimate
apps, a common technique used by many malicious apps). For the former, Fahl et al.
[2012] and Egele et al. [2013] design specialized tools to statically detect improper uses
of cryptography. For plagiarism detection, MassVet [Chen et al. 2015], DroidEagle [Sun
et al. 2015], and ViewDroid [Zhang et al. 2014b] attempt to address the issue in an
effort to stem the rise of mobile malware.

Finally, other tools have looked into less studied issues. Several look at issues re-
lated to whether sensitive functionality is warranted by the current app context to
detect stealth behaviors indicative of malicious intent (AsDroid [Huang et al. 2014]
and AAPL [Lu et al. 2015]). Clapp [Fratantonio et al. 2015], on the other hand, pro-
vides a loop analysis framework that is designed to detect inputs that could lead to an
app denial of service attack.

Note that unlike the dynamic analysis tools that we surveyed, the majority (27) of
static analysis tools were meant to be applied to benign apps, whereas only 9 tools were
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applicable only to malicious apps. We note that 14 tools were “dual use,” meaning that
they provide insights into both malicious and benign applications. This is shown later
in Figure 4.

4.1.4. Analysis Techniques. The ultimate goals of many of the tools are closely related;
however, the techniques used to achieve these goals vary. For information leaks and
permission misuse, reachability (6 tools) or taint analysis techniques (10 tools) are
common. Indeed, almost every paper that covers these topics uses some variant of
these techniques. AAPL [Lu et al. 2015], for example, although fundamentally a
static taint tracking tool, expands on the basic taint tracking premise by building
the interprocedural constant evaluation and concrete object type inference. Flow
analysis (4 tools) and flow graph generation (1 tool) are also popular and sometimes
supplementing techniques for these areas. Moreover, slicing-based dataflow analyses
have been used in the 2 papers that share a common code base (CryptoLint [Egele et al.
2013] and UI Deception [Bianchi et al. 2015]). Further still, several papers have relied
on simple call graph analysis and/or even simpler scanning techniques to search for the
presence of calls to sensitive system APIs (Drebin [Arp et al. 2014], AppProfiler [Rosen
et al. 2013], Copes [Bartel et al. 2012b]). Finally, 10 papers relied on some combination
of lightweight analysis and simple heuristics to derive analysis results.

4.1.5. Frameworks. Because Android apps are based in Java, a common theme in An-
droid static analysis is to adapt Java-based analysis frameworks for Android analysis.
Twenty-seven tools used one or more public frameworks. Soot [Vallée-Rai et al. 1999;
Bodden 2012; Padhye and Khedker 2013; Lam et al. 2011; Reps et al. 1995; Sagiv et al.
1995] was the most popular with 14 tools, followed by the Android lightweight static
analysis tool Androguard [2012] with 5 tools, Baksmali [2009] with 5 tools, and Wala
[2006] with 3 tools.

The reuse of these frameworks and creation of new frameworks is a boon for the
community, as shared infrastructure makes collaboration and code reuse easier, sav-
ing precious development time in future research. Unfortunately, although many re-
searchers build on the work of the Java community, only 3 tools were developed to
be extensible—Amandroid [Wei et al. 2014], Anadroid [Liang et al. 2013], and Scan-
dal [Kim et al. 2012]. Furthermore, only 12 of the 36 tools were publicly available,
meaning that it is even more difficult to verify results or build on these tools.

4.2. Dynamic Analysis

We find that the state of the art in Android dynamic analysis differs starkly from the
state of static analysis. Table II shows our characterization of the dynamic analysis
space. We survey a total of nine tools.1 Half of these are publicly available, although
only one tool is designed as an extensible framework.

Immediately, one can see that dynamic analysis has simply not seen the attention
or investment that has been lavished on static analysis approaches. We hypothesize
that this is the result of the following reasons. The first reason is simply that static
analysis techniques are studied well outside the field of computer security, with
multiple fields having researchers interested in such topics—from programming
language researchers to compiler developers to software engineers. Another reason
that dynamic analysis is less popular is that researchers may have the perception that
static approaches (although not perfect and often prone to false positives) will give
better results owing to the fact that static analysis approaches can process all code

1LazyTainter [Wei and Lie 2014] is not shown in the table. This article optimizes memory performance of
TaintDroid [Enck et al. 2014] while not changing its security-relevant functionality or analyses.
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Fig. 3. Information leaks are by far the most common vulnerability class detected by the systems we survey.

Fig. 4. Dynamic analysis approaches focus more on malicious applications, whereas static analysis tools
focus more on benign and dual-use applications.

paths with a sufficiently sound technique (subject to the previously discussed caveats
of reflection, mobile code, and native code).

4.2.1. Analysis Goals. We believe that dynamic analysis of Android applications is an
area ripe for innovation. To date, out of all tools that we survey, six are designed to
detect malicious activity, seven detect information leaks, and four detect both. This is
shown in Figure 3. These tools also detect root compromise (PREC [Ho et al. 2014],
AppsPlayground [Rastogi et al. 2013]), advertising fraud (MAdFraud [Crussell et al.
2014]), and permissions abuse (VetDroid [Zhang et al. 2013]) by applications. All but
two tools can handle analyzing malicious applications, and five were meant only for
detecting malicious applications (as shown in Figure 4). For an entire analysis strategy,
we believe that this is a narrow view of the capabilities of dynamic analysis. Properly
constructed dynamic analysis has the ability to supplement or overcome many of the
limitations of static analysis. For example, the literature measuring cryptographic
vulnerabilities (MalloDroid [Fahl et al. 2012] and CryptoLint [Egele et al. 2013]) or
advertising behavior has relied on static analysis followed by a manual review of
execution, and dynamic analysis could reduce reliance on manual review.
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4.2.2. Analysis Techniques. Most of the tools that we survey perform either taint track-
ing (five tools) or use system calls (four tools) to perform their analysis. Only three
systems are capable of tracing network data. Most system call approaches deal with
Linux-level system calls (often captured using strace); however, two systems actually
gather traces at the Android API level—giving a deeper insight into the high-level
semantics of the system. CopperDroid [Tam et al. 2015], on the other hand, takes a dif-
ferent approach for portability reasons, demonstrating that it is possible to reconstruct
events such as Binder IPC through behavioral analysis of the captured system calls.
Additionally, several systems track dataflows in apps, and five tools actually track data
through multiple applications. Further still, two tools can actually track data passing
through native code—in sharp contrast to static approaches, which do not.

4.2.3. Code Coverage Challenge. Unlike static analysis, dynamic analysis requires spe-
cific inputs to drive an execution trace (and thus an analysis). Selection of inputs
determines which branches of code will be executed and ultimately governs code ex-
ecution. Three of our tools address input generation, whereas the other six consider
it an orthogonal problem beyond the scope of their research efforts. Of the tools that
do address user input generation, two tools go beyond random input generation (i.e.,
fuzzing). Although user inputs are necessary to model an app’s true behavior in gen-
eral, Android has a rich set of system events that should also be generated to have a
high code coverage. An example of these system events include receiving a call or SMS,
and these events trigger code execution in a large body of legitimate and malicious ap-
plications. Only two tools address this challenge at all, and only one (PREC [Ho et al.
2014]) goes beyond fuzzing coverage, using the actions that an app expects to respond
to as a means of generating events. TriggerScope [Fratantonio et al. 2016] attempts
to statically detect logic bomb triggers via trigger analysis; similar approaches may be
useful in the future for aiding dynamic analysis.

The view that input generation is an orthogonal problem to analysis is a common
one, and it is supported by several separate works beyond the scope of this article.
Choudhary et al. [2015] published a survey last year solely on the issue of test gener-
ation approaches. We refer readers to that work for more information on Android test
generation [Amalfitano et al. 2012; Aviv et al. 2012; Xu et al. 2012; Gomez et al. 2013;
Machiry et al. 2013; Hao et al. 2014; Liang et al. 2014; Mahmood et al. 2014; Narain
et al. 2014].

4.2.4. Resiliency. When we designed this study, we knew from past experience that
dynamic analysis frequently focused on detecting malware. We also knew that due to
the costs and operational complexity of doing bare-metal malware analysis at scale,
most malware detection tools would be emulation based. We were not surprised by
this point, but we were surprised at how few tools aimed to hide the fact that apps are
executing in an emulator (only one), and no tool looked for emulation detection schemes
in the apps under test. Recently, researchers have attempted to address this limitation.
Vidas and Christin [2014] proposed a technique to identify Android runtime analysis
systems based on behavior, software/hardware, and performance. Sand-Finger [Maier
et al. 2014] computes fingerprints of Android systems to find distinct signatures of
analysis environments. And Mutti et al. [2015] proposed the tool BareDroid, designed
for practical Android application bare-metal analysis.

4.3. Conclusions

This section outlined how the current state of the art addresses several fundamental
challenges. One of the most important unaddressed challenges is that static analysis
tools lack support for native code. Without support for native code analysis, none of the
static analysis tools studied in this section can guarantee that their analysis is sound
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Table II. Dynamic Analysis
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Input Simulation

User input simulation • • ◦ ◦ ◦ ◦ • ◦
User input simulation: fuzzing • ◦ ◦ ◦ ◦ ◦ • ◦
User input: intelligent input generation (e.g., logins, zip codes) • • ◦ ◦ ◦ ◦ ◦ ◦
Network access simulation ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
System event simulation • • ◦ ◦ ◦ ◦ ◦ ◦
System event simulation: fuzzing • ◦ ◦ ◦ ◦ ◦ ◦ ◦
System event simulation: intelligent input generation ◦ • ◦ ◦ ◦ ◦ ◦ ◦

Techniques

Taint tracking • ◦ • • ◦ • ◦ ◦
Syscall traces ◦ • ◦ • ◦ • • ◦
Android API layer traces • ◦ ◦ • ◦ ◦ ◦ ◦
Library call traces ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Network traces ◦ ◦ ◦ • • ◦ ◦ •
Native instruction traces ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Dalvik instruction traces ◦ ◦ ◦ • ◦ ◦ ◦ ◦
Concolic execution ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Control- and
DataFlow
Tracking

Multiple applications • • • • ◦ ◦ ◦ ◦
Multiple applications: system applications • • • • ◦ ◦ ◦ ◦
Multiple applications: user applications • • • • ◦ ◦ ◦ ◦
Native code ◦ • ◦ • ◦ ◦ ◦ ◦

Resiliency
Emulator detection detection ◦ ◦ N/A ◦ ◦ ◦ ◦ ◦
Emulator Obfuscation—mimicking realistic environment • ◦ N/A ◦ ◦ ◦ ◦ ◦
Detects logic bombs or context-sensitive behavior ◦ ◦ ◦ • ◦ ◦ • ◦

Misc

Extensible ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Useful for any app • • • • ◦ • • ◦
Publicly available • � • • ◦ ◦ ◦ ◦
Benign only/malicious/dual use D M B M M D M D

Vulnerabilities
Detected

Malicious activity • • ◦ • • • • ◦
Detect sensitive information leaks • � • • ◦ • ◦ •
Authentication ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Cryptography ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Data validation ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Intent spoofing ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Unauthorized intent receipt ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Configuration and deployment management ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Permission misuse ◦ ◦ ◦ ◦ ◦ • ◦ ◦
Plagiarism detection ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
Other � ◦ ◦ ◦ � ◦ � ◦

when faced with an application containing native code. This is especially troubling for
tools that are intended to work with malicious code, as malicious applications often
hide their functionality in native code to avoid detection. Other examples of similar
open problems in static analysis include the lack of support for dynamic DEX loading
and the minimal support for reflection in static analysis tools. Both represent areas of
unsoundness in these tools, which can also be detrimental when dealing with malicious
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applications. These issues are complex, as both reflection and dynamic DEX loading
can be obfuscated by encryption, packers, or other techniques. For dynamic analysis,
one of the most important open problems is that analysis frameworks are not resilient
to tool detection and evasion. In summary, there is still much to do to improve program
analysis for Android apps.

5. EXPERIMENTAL METHODOLOGY

The systems security community values tangible artifacts. Public release of tools allows
independent verification of scientific results and provides a stepping stone for other
researchers and industry seeking to transition research ideas to practice. Many of
the tools described in Section 4 are not open source or publicly available in any form
(e.g., via a Web site). Fortunately, some tools have been made available due to the
encouragement of funding agencies and technical program committees, as well as the
values of some authors.

As part of systematization of Android application analysis tools, we seek to charac-
terize publicly available tools with respect to the following high-level criteria:

5.0.1. C1. How difficult is it for an individual with a computer science background to
use the tool? Although releasing the source code for a tool is immensely valuable, there
is usually a steep learning curve before the tool may be applied. Research papers rarely
(if ever) claim to produce production quality code. The technical artifacts are tools for
researchers, written by researchers. However, the “consumers” of these tools are often
first-year graduate students exploring research areas or employees for a company
seeking to transition research ideas into practice. Therefore, if program committee
members, advisors, and project managers are going to state “just go use tool X,” we
need to characterize the difficulty of using tool X.

5.0.2. C2. How well does the tool work in practice? It is sometimes difficult to extrap-
olate from a paper how well a tool will work in practice. In some cases, the dataset
selected by the authors might have been unknowingly favorable to the tool. In other
cases, the authors might have missed samples with important characteristics. Alterna-
tively, new platform features or development trends might have changed assumptions
made during the tool’s development. We do not seek to repeat all of the experiments
made by the authors; however, we do seek to understand how well tools work in prac-
tice. Perhaps more importantly, the findings may help to identify gaps leading to new
research challenges.

The ultimate goal of this research is to evaluate each tool on these criteria indepen-
dently on its own merits. Because we select such a diverse set of tools and evaluate
them on such high-level criteria, these experiments are not meant to provide a narrow
comparison between tools but rather to serve as an indicator of reproducibility and
effectiveness of Android software security research.

The remainder of this section describes the experimental methodology used to eval-
uate tools against these criteria.

5.1. Tool Auditor Selection

To assess the difficulty of using tools, we recruited eight computer science graduate
students (six masters students and two PhD students) from the University of Florida to
serve as auditors. These students were available for a period of 10 weeks, bounding the
available analysis time for this project. Auditors were selected through an interview
process that assessed their computer and network security knowledge, programming
experience, and understanding of the Android domain. Each of the students selected
had prior Java programming experience and previous experience with Android. The
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tools that were assigned to each auditor were determined based on the auditor’s prior
experiences (e.g., programming languages) to maximize the likelihood of success.

5.2. Audited Applications

Each of the Android security tools were assessed by performance examination dur-
ing the analysis of three classes of Android applications: DroidBench applications
(version 2.0), mobile money applications, and the top 10 most widely used finance ap-
plications available through Google Play. Finance apps were chosen based on the fact
that most of the data transmitted via financial apps (e.g., banking, personal budgets)
is sensitive and private.

The DroidBench suite of applications [Arzt et al. 2014] is a set of minimal Android
apps designed to stress test program analysis tools. The suite was chosen because it
serves as the benchmark by which many of the tools based their effectiveness. Accord-
ingly, reuse of DroidBench allowed us to perform independent validation. The mobile
money applications serve as a means of providing branchless banking in the develop-
ing world. These applications were the subject of an earlier work [Reaves et al. 2015]
and exhibit a multitude of issues including, but not limited to, incorrect certificate
validation, flawed cryptography, and information leakage. By including this class of
applications, we make available several real applications with known vulnerabilities
to contrast the artificial applications in DroidBench. The following mobile money appli-
cations were used in this study: Oxigen Wallet, Vivo Zuum, GCash, MCoin, My Airtel,
and mPay. Finally, the top 10 free finance applications in Google Play were selected
because these apps provide a rich number of features associated with transactions, reg-
istration, and authentication that can be tested by the Android security tools and have
a large user base. Critically, these applications are produced by developers associated
or employed by large corporations, which separate this class from the mobile money
and DroidBench apps. These applications are Google Wallet, Chase Mobile, Credit
Karma, Bank of America, Wells Fargo Mobile, PayPal, Capital One Mobile, Android
Pay, Venmo, and GEICO Mobile. We used the latest version of these applications as of
September 28, 2015.

5.3. Tool Audit Procedure

For each tool, an auditor was tasked with analyzing all applications in the three afore-
mentioned classes. The auditors each received one tool at a time and were asked to
maintain a detailed time log. By doing so, we were able to monitor the time needed
to configure the requisite environment and successfully generate results using a given
tool. General information on each tool, including the problem it seeks to address, the
vulnerabilities it can detect, and the type of analysis the tool performs, was documented
to provide a baseline for expectations when analyzing the applications in the test set.

The assessment of C1 evaluated the tool based on accessibility, availability of in-
structions, and assumed knowledge. The purpose of the assessment was to determine
if an auditor can use the tool’s documentation and source code comments to interpret
analysis results.

The assessment of C2 evaluated the tool based on precision and performance. Audi-
tors recorded details related to output and accuracy. These details aided in determining
whether or not the tool’s claimed accuracy was reproducible on a different test set. The
auditors’ details also provided information about what users can expect once the tool’s
analysis was done. For performance, the auditors recorded CPU time and memory
usage while analyzing applications. These measurements determined the computing
resources needed to analyze not only artificial applications but also real ones. Hardware
limitations are discussed in the following section.
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Each auditor initially ran his or her respective tool using default settings. If the
results proved to be either inaccurate or the tool ran without terminating, the auditor
chose new tool settings that we believed would produce the expected results. The
auditor continued this process until either the tool produced accurate results or our
analysis time expired.

5.4. Hardware Limitations

During the audit of FlowDroid, TaintDroid, and DroidSafe, the auditors’ test machines
proved to be insufficient when analyzing the real applications from both the mobile
money and finance top 10 sets. As a result, these tools and the remaining applications
were analyzed on a machine with 48GB of RAM and dual quad-core Xeon processors.
In the case of FlowDroid and DroidSafe, this machine proved to be inadequate due to
lack of sufficient memory (FlowDroid) and a suspected memory leak (DroidSafe). The
auditor of FlowDroid then employed an Amazon EC-2 Ubuntu machine equipped with
64GB of RAM and 12 vCPUs. The result proved to be the same. The lack of sufficient
computing resources proved to be problematic in the case of FlowDroid and DroidSafe.
These issues are discussed in greater detail in Section 6.

5.5. Tool Maintenance

Less than half of the tools have been updated within the past 6 months. In addition,
less than half have a dedicated community, although all but one tool provided an email
address for developers to send questions and comments. One of the seven tools did not
have a code repository at all.

6. TESTING RESULTS

We now discuss the results of our empirical evaluation of publicly available tools for
Android application analysis. For each tool, we begin with a brief summary of its
characteristics and purpose. We then report the auditors’ experiences using the tools,
as well as the precision and performance of analysis. We found that some tools failed
to run all of the applications.

6.1. Amandroid

Amandroid [Wei et al. 2014] is an application analysis tool designed to detect data leaks,
data injections, and API misuse. Its main motivation is to improve the current state of
static analysis of Android applications. The tool is publicly available and runs solely
on Linux. Amandroid was written in Scala and computes a points-to analysis of every
object—a detailed state of all objects during execution. It then builds an interprocedural
control flow graph that handles ICC by including flow- and context-sensitive edges.

6.1.1. Usability Experiences. The auditor spent 3 hours setting up the tool; however, most
of the setup time was the result of misleading documentation, and it could have been
set up in 1 hour. The primary source of confusion was that Eclipse was not actually
required. Negligible time was required to configure the tool, and all configuration
options were displayed when executing it via the terminal. The Amandroid output was
human readable but complex, as it requires a thorough understanding of Amandroid
terminology. Additionally, the output appeared to be machine parsable due to its clear
structure. The output is a comprehensive text file that lists the components of the code
base and a verdict on each.

6.1.2. Experimental Results. The auditor found that Amandroid only successfully ran on
small applications. All of the DroidBench applications ran successfully, each requiring
approximately 90 seconds. However, only four of the six mobile money applications
were successfully analyzed, and Amandroid identified a confused deputy vulnerability
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in one of them. In addition, only 2 of the 10 Google Play Store finance applications
were successfully analyzed. Finally, in most cases, we needed to increase the default
memory configuration parameter from 2GB to 4GB.

6.2. AppAudit

AppAudit [Xia et al. 2015] is a Web-based hybrid (static/dynamic) taint analysis tool.
The main motivation of the tool is the discovery of sensitive data leaks. AppAudit is
only available via its Web interface, and no source code is publicly available. AppAudit
covers two types of analyses, static and dynamic, by first analyzing the application
statically, then further pruning false positives by performing dynamic analysis in a
simulated execution.

6.2.1. Usability Experiences. Since AppAudit is Web based, there was no client-side
setup. The Web interface was very primitive and only contained an interface to up-
load an APK file. The analysis output was also very minimal, simply listing detected
vulnerabilities or detected malware. Although the output was also human readable,
it did not appear to be easily machine parsable. No manual effort was required to
interpret the results once they were disclosed.

6.2.2. Experimental Results. Only 80% of the DroidBench applications ran successfully.
Of the DroidBench applications that completed, AppAudit detected a leak in only 39
apps, in contrast to the 100% accuracy reported in the paper [Xia et al. 2015] for a
previous version of the DroidBench suite. Curiously, AppAudit reported several Droid-
Bench applications as matching malware signatures (often several different signatures
matched a single application). For the other application datasets, none of the mobile
money applications and only 5 of the finance top 10 were successfully analyzed. Four
of the failures were due to native code in the application under test. The AppAudit
paper lists native code analysis as a limitation. Finally, AppAudit took an average of 3
seconds to successfully analyze an app.

6.3. DroidSafe

DroidSafe [Gordon et al. 2015] is a static application analysis tool designed to ana-
lyze malicious information flows in Android source code and APK files. The primary
contribution of DroidSafe is to closely model the Android runtime environment.

6.3.1. Usability Experiences. DroidSafe took the auditor 15 hours to set up. A significant
portion of that time was spent hunting down and installing tool dependencies. The
configuration itself took 4 hours and consisted of copying APK files into directories and
adding makefiles for each. The auditor found that DroidSafe did not run on recently
updated applications that do not support Android SDK 19. The documentation was hard
to follow and appeared incomplete and outdated. The analysis of several applications
resulted in NullPointerExceptions in the tool, and the auditor had to modify the code
for the analysis to complete.

6.3.2. Experimental Results. The auditor was able to run DroidSafe on more than half
of the DroidBench applications. Each ran successfully, taking on average 5 minutes to
complete. The auditor was also able to run the tool on half of the Google Play Store
apps and all of the mobile money apps; however, all analyses failed. The average time
before the program crashed due to a suspected memory leak was about 60 minutes. In
an attempt to complete the analyses, the memory allocation was increased from 16GB
to 48GB, yet the memory increase did not help.
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6.4. Epicc

The main motivation of Epicc is to build a precise and scalable analysis tool that
tracks flows through ICC. Epicc [Octeau et al. 2013] is a static Android application
analysis tool designed to analyze retargeted .apk files (if used in conjunction with
Dare [Octeau et al. 2012]). It is designed to detect seven classes of vulnerabilities:
activity hijacking, broadcast theft (sniffing), malicious broadcast injection, malicious
activity launch, protected system broadcast without action check, malicious service
launch, and service hijacking. The source code is publicly available.

6.4.1. Usability Experiences. Epicc is a Java-based tool that is run on the command line.
Running Epicc on APK files also required setting up Dare. The setup instructions for
Epicc were easy to follow, but Dare was slightly challenging to use. The output was
human readable but not easily machine parsable.

6.4.2. Experimental Results. All applications from all three classes completed success-
fully. Vulnerabilities were only found in the mobile money apps and DroidBench apps.
The top 10 financial apps ran in an average of 18 minutes, the mobile money apps ran
within 15 minutes, and the DroidBench apps ran within 1 minute.

6.5. FlowDroid

FlowDroid [Arzt et al. 2014] is a static taint analysis tool for Android applications
designed to identify leakage of private information. The main motivation of FlowDroid
is to analyze and determine connections from source to sink. Therefore, it can only
detect one type of vulnerability: information leakage. FlowDroid covers several types
of taint analyses, which include context, flow, field, object-sensitive, and lifecycle-aware
taint analysis. The source code is publicly available.

6.5.1. Usability Experiences. The initial setup took 1 hour and 45 minutes, which con-
sisted of downloading FlowDroid .jar files, the missing SDK files required to run Droid-
Bench, and installing Android Studio. An additional 2 minutes were required for each
application analyzed to change configuration parameters to accommodate the applica-
tion size. Overall, the documentation was clear; however, the analysis memory require-
ments for real applications came as a surprise. The FlowDroid output appeared to be
machine parsable. The output was also human readable but unintuitive at first glance.

6.5.2. Experimental Results. All of the DroidBench applications were successfully ana-
lyzed. Each DroidBench application took on average of 4.505 seconds to run, took 30
seconds to track methods, and required 172.9MB of memory. The auditor’s results con-
firmed the published results [Arzt et al. 2014]. The auditor attempted to analyze the top
financial apps, but even the smallest application, Venmo, could not be analyzed with
the default settings. In addition, only one of the six mobile money apps ran successfully
after using an Amazon EC2 machine with 64GB of RAM and 16 virtual CPUs.

6.6. MalloDroid

MalloDroid [Fahl et al. 2012] is a static Android application analysis tool designed to
detect improper TLS certificate validation that may allow Man-in-the-Middle (MitM)
attacks. The source code is publicly available.

6.6.1. Usability Experiences. The tool setup took the auditor 1 hour to complete, which
consisted of downloading mallodroid.py as well as Androguard [2012]. The tool doc-
umentation was sufficiently detailed to run the tool but was vague with regard to
installing the Androguard framework. Most of the setup time was spent setting up An-
droguard through trial and error. The output was human readable, as well as machine
readable, as long as the XML output option was passed at the command line.
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6.6.2. Experimental Results. MalloDroid does not detect information flow leaks, and
therefore the DroidBench apps were not analyzed. The MalloDroid tool produced an
alert if there were potential TLS issues or vulnerabilities. The existence of unsafe
code does not necessarily mean that these applications are vulnerable to an MitM
attack. MalloDroid successfully analyzed all top financial apps, with the analysis for
each application completing in about 4 minutes. Additionally, all of the mobile money
applications were analyzed successfully, also requiring 4 minutes on average. Of the 10
applications analyzed, 80% had potential vulnerabilities. In the MalloDroid paper [Fahl
et al. 2012], only 8% of those 13,500 applications produced potential vulnerabilities.
Since we do not have the full list of apps that were tested, we can only assume that out
of the 13,500, some of those did not use TLS at all, which will cause a clean MalloDroid
scan. In the paper, Fahl’s team also performed a manual audit of 100 apps and found
that 41% of those were actually vulnerable, which is more consistent with the results
presented here.

6.7. TaintDroid

TaintDroid [Enck et al. 2010] is a dynamic taint analysis tool designed to analyze
commonly used applications to identify leaks of privacy-sensitive information. It is
designed to run on a real device. The source code is publicly available.

6.7.1. Usability Experiences. Out of the tools discussed in the section, TaintDroid was
the most difficult to set up, in part because it required the user to download and build
the Android AOSP project. The initial auditor for this experiment spent a significant
time attempting to get TaintDroid set up. The auditor did not have access to a sup-
ported device and was unable to get TaintDroid to run as an emulator on a remote
server (due to the high system requirements for building AOSP). A second auditor was
then tasked to perform the experiments. The auditor had access to a Galaxy Nexus de-
vice (supported by TaintDroid) and successfully completed the setup and experiments.
TaintDroid primarily reports output to logcat but includes a GUI application to notify
the user. The logs are partially human readable. For example, the output specifies the
process ID, a hex encoded taint tag vector, and the entire buffer sent to the network.
Although the GUI application has code to parse the logs, parsing the network buffer is
more difficult. Finally, since TaintDroid uses purely dynamic analysis, all applications
must be run by hand.

6.7.2. Experimental Results. Of the 119 DroidBench applications, 86 were successfully
analyzed. Of the 86 analyzed applications, leaks were detected in 55. All 6 of the mobile
money apps ran successfully, and no privacy leaks were detected. However, only 3 of
the 10 Google Play Store finance applications would run. This was likely due to their
use of native code, which is not supported by TaintDroid. When the native library is
loaded, TaintDroid intentionally crashes the application.

7. LESSONS LEARNED

Our analyses of both the literature and tools have provided us with several important
insights, which we share next.

In our study, we surveyed several hundred Android-related papers and understand
that no tool can address all major issues, even within a specific topic such as static
analysis. We also noticed in our review that in many instances, researchers claim
that challenging analysis problems are “out of scope” or “orthogonal.” Unfortunately,
this approach, although certainly understandable and often valid, leads to missed
opportunities. These difficult out-of-scope challenges are often avoided entirely in
the face of easier (although important) problems. As a result, it is unclear whether
efforts to address these so-called orthogonal problems can be built in an efficient and

ACM Computing Surveys, Vol. 49, No. 3, Article 55, Publication date: October 2016.



*droid: Assessment and Evaluation of Android Application Analysis Tools 55:23

effective manner. In essence, it is not clear that problems claimed as orthogonal can
indeed be addressed by complementary work as a matter of engineering integration.
For example, analysis of native code (discussed later in this section) requires different
algorithms and analysis infrastructure as opposed to analysis of Java or Dalvik
code. We do not believe that researchers should be expected to produce fully featured
analysis products ready for the market; however, we do believe that further exploration
of both more difficult problems and research on the integration of orthogonal concerns
are fertile ground for future research.

7.1. Static Analysis

All of the papers that we examined sidestep native code analysis. This is reasonable
from the academic perspective because Android analysis and ARM analysis are two
separate problems. However, there remains much room for innovation in this space,
including how one meaningfully unites control- and dataflow analyses from hetero-
geneous computing platforms. The use of a common intermediate representation (IR)
may be one approach, but representing both high-level Android and low-level ARM
semantics together would be nontrivial. The use of native code has historically been
limited to a small portion of applications in the market (5% to 7% [Crussell et al. 2012]).
However, in recent work, researchers found that 14% of applications with fewer than
50,000 downloads contained at least one native library, whereas 70% of applications
with more than 50 million downloads contained at least one native library [Viennot
et al. 2014]. The increased importance of native code means that the challenge of an-
alyzing a complete application—both Dalvik and native portions—is more important
than ever.

Virtually every paper that we examined analyzed DEX files from compiled APKs.
Accordingly, the community has spent very little time on traditional source code anal-
ysis. Although Dalvik is a high-level VM, some portion of the original semantics are
still lost during compilation, requiring some amount of guesswork on the part of the
decompiler to lift back to Java. Furthermore, the extensive Androidisms discussed in
this article still remain stumbling blocks to traditional Java analysis frameworks.

Finally, reflection- and obfuscation-aware static analysis tools are generally lacking.
These techniques need not be applied only against malware; rather, advances against
the basic protections offered by tools such as ProGuard [2002] would benefit the com-
munity greatly.

7.2. Dynamic Analysis

As we mentioned earlier, dynamic analysis research represents a far smaller propor-
tion of the community’s effort than work on static analysis. There are several reasons
we believe this to be true. First, emulation (the primary method of executing apps) is
inherently slow. Despite improvements to both the official Android emulator and the
release of improved third-party emulators like Genymotion, analysis of large, complex
applications is still resource intensive. Bare-metal analysis strategies like the one pro-
posed by BareDroid [Mutti et al. 2015] will help to address the scalability challenge,
although at a significant cost in hardware. Such costs may still be worthwhile to larger
organizations, such as corporate customers looking to create “internal app markets”
for employees that automatically ensure that apps do not leak sensitive information.
Second, input generation and code coverage is a fundamentally hard problem for all dy-
namic analysis strategies. It is also diametrically opposed to scalability and efficiency,
as greater code coverage requires greater resources. These challenges mean that there
is currently no dynamic analysis analogue to scalable lightweight static analysis sys-
tems like CryptoLint [Egele et al. 2013] or MalloDroid [Fahl et al. 2012], which can
analyze code at market scale.
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7.3. Tool Availability, Testing, and Maintenance

There is no question that our community values research artifacts. The authors of
this article have personally pushed to shepherd papers through the conference accep-
tance process to ensure that such tools are made available. We commend researchers
for publicly releasing their tools and hope to encourage more to do so in the future.
Unfortunately, most of the tools surveyed in Section 4 released no artifacts beyond
an academic paper. We understand that research artifacts are not industrial tools
with dedicated engineering teams, and accordingly these xtools can be expected to be
“rough around the edges.” However, only a small portion of the community seems to be
releasing code at all.

This is problematic for a few reasons. First, as noted previously, it prevents the
community from buildixng on one or a small number of analysis frameworks. This
in turn causes researchers to spend significant time attempting to reimplement
mechanisms that others have already built. Second, part of our motivation for testing
tools in this work was to reinforce the traditional scientific practice of independent
evaluation of results. Indeed, for the tools we tested that claimed to successfully
evaluate the DroidBench apps, we were able to mostly confirm this assertion. The
lone difference is AppAudit, which now only finds 47.5% of the applications that it
can run in the DroidBench set as vulnerable. We note that DroidBench has expanded
from 65 to 116 applications since AppAudit’s publication. Independent verification is
commonplace in other communities but rarely practiced in our community, partially
for the reason of availability. It is our hope that this work is the first of many that
encourage this practice to become more valued and widespread.

Most tools required a significant investment in terms of time to get running. Our
team found several of these research artifacts frustrating to use despite the best in-
tentions of the tool developers. A significant amount of our team spent time trying to
resolve dependency issues with software libraries and operating system incompatibil-
ities. Many of these issues could be prevented if tool developers distributed not only
their research code but also a complete virtual machine2 containing a working build
of their tools. We have found this method to be effective both for internal and external
distribution of research artifacts. Additionally, our auditors indicated that it would be
very helpful if each tool came with a test application so that it could be verified that
that tool was correctly configured before attempting to analyze more complex apps.
Last, we appreciate that releasing and maintaining tools does not come at zero cost.
We encourage researchers to take advantage of funding opportunities such as the re-
cently changed National Science Foundation Transition to Practice perspective. For
researchers based in the United States, this effort will allow them to compete for fund-
ing designed to “support the development, implementation, and deployment of applied
security research into an operational environment.”3

8. CONCLUSIONS

Applications for the Android platform run the gamut of functionality, providing its
users with solutions in spaces as diverse as the control of Internet of Things devices to
connecting with business opportunities across the world. Because these applications
are built based on Java, the research community has had unprecedented access to
measure and improve the security of more than a million applications spanning this
spectrum. The research community has responded with enthusiasm, producing a range

2Other technical approaches, including Linux containers, may provide similar benefits, but the end result
should be an easy to run and validate artifact free of dependence on external projects.
3http://www.nsf.gov/pubs/2015/nsf15575/nsf15575.htm.
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of techniques and tools to identify and mitigate application security issues. This is the
first work attempting to reason about the space of Android application security re-
search and the tools that these efforts have proposed. We began by discussing Android-
specific challenges to program analysis and followed with a comprehensive analysis
of the published application analysis research performed over the past 5 years. We
then evaluated the ability for applications developers to apply the tools created in the
preceding research to a range of real applications. We found first that many areas still
require attention by the community and that the tools deserve additional study and
support before they are ready for a wider community to reap their rewards. Finally, we
offered several suggestions on how to move forward as a community.
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